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An analysis and computational procedure are developed for the solution of the coupled 
system of transient, multidimensional equations governing current continuity for electrons and 
holes, and the electrostatic potential in semiconductors. The analysis is unique in that through 
it the 3 x 3 coupled system is reduced to 2 x 2 coupled, parabolic system, the continuity 
equations, and a scalar. elliptic equation, Poisson’s equation, which are solved sequentially 
without introducing stability restrictions or iteration. The coupled continuity equations are 
integrated through implementation of an LB1 algorithm followed by solution for the elec- 
trostatic potential using a scalar ADI procedure. The stability and accuracy of the method are 
explored in one-dimension followed by application to a three-dimensional transient charge 
collection simulation. 1 19X7 Academic Prerr. Inc 

INTRODUCTION 

A major concern in the multidimensional, transient simulation of semiconductor 
devices is the large amount of computational effort required to obtain numerical 
solutions to the governing current continuity and Poisson’s equations. These 
equations form a nonlinear, time-dependent, coupled system of PDEs. When 
attempting to solve these equations numerically, implicit methods appear attractive 
due to their favorable stability properties. However, since the equations are non- 
linear and coupled, some form of linearization must be introduced. This may be 
accomplished by treating each equation as a scalar equation and iterating to 
account for coupling and nonlinearity, or by expressing the system as a linearized 
block 3 x 3 coupled system which is solved iteratively using, for example, Newton’s 
method. Corttell and Buturla [l] have developed procedures following both 
approaches and discuss the advantages and drawbacks of each. In either case, large 
systems of linear algebraic equations must be solved repeatedly at each time step. 
These linear systems are frequently solved using direct or iterative matrix inversion 
procedures which may result in excessive computer run times. Two areas can thus 
be identified which contribute significantly to the computational effort required in 
obtaining solutions to the semiconductor equations; the use of nonlinear iteration, 
and inefficiency of the methods used to solve the linearized system of equations. 
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The approach presented herein reduces the effort in both these areas through 
application of consistently split, linearized, block implicit (LBI) methods to obtain 
solutions to the governing semiconductor equations. LB1 and related methods were 
originally developed by Briley and McDonald [2, 31, and Lindemuth and 
Killeen [4] in independent investigations, and have previously been applied to 
obtain solutions of the Navier-Stokes equations in the field of computational fluid 
dynamics (CFD). The methods center about a formal linearization technique which 
allows solutions of nonlinear, coupled PDEs in one space dimension to be com- 
puted efficiently without iteration. The efliciency of the procedure is retained for 
multidimensional problems through consistent splitting of the LB1 operators using 
ADI techniques which reduce the broad-banded multidimensional system of 
equations to systems of one-dimensional equations having narrow block-banded 
matrix structures. The term consistent splitting is introduced since, in the ADI 
technique employed, the intermediate level solutions are consistent with the original 
system of equations. Briley and McDonald discuss the possible problems which 
may arise if inconsistent splitting schemes are used in [2]. 

LB1 techniques may be applied directly to solve the coupled block 3 x 3 system 
consisting of the continuity and Poisson’s equations in one space dimension. 
However, when considering multidimensional problems, the block 3 x 3 system can- 
not be ADI split due to the absence of a time derivative in Poisson’s equation. In 
the present procedure, this problem is circumvented by reformulating the continuity 
equations in a manner which allows the coupled block 3 x 3 system to be reduced 
to a coupled block 2 x 2 system, which is solved efficiently, without iteration, using 
an LB1 method, and a scalar, elliptic equation (Poisson’s equation) solved using an 
iterative ADI procedure. Consequently, iteration is limited to the solution of 
Poisson’s equation and nonlinear iteration is eliminated completely. The favorable 
stability properties of the fully coupled implicit method are retained, as will be 
demonstrated. 

ANALYSIS 

The analysis which follows is founded on the need to obtain the governing 
equations in a form suitable for rapid and efficient numerical solution. Thus, in con- 
trast to other analysis and computational procedures where numerical methods are 
simply employed to generate solutions to given sets of partial differential equations, 
the concept of numerical solution and the methods to be employed are an integral 
part of the present analysis. In some instances these considerations dictate the direc- 
tion which the formulation takes. 

The Governing Equations 

The motion of electrons and holes in the semiconductor material in question, and 
the electrostatic potential, are assumed to be governed by the classical drift and 
diffusion equations and Poisson’s equation 
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(1) 

(2) 

(3) 
= -ep. 

In Eqs. (l)-(3), N is the electron concentration, P the hole concentration, pk and 
D,, are mobilities and diffusivites for electrons and holes (k = N, P), Ei is the electric 
field in the ith direction, R is any suitable recombination/generation mechanism, II/ 
is the electrostatic potential, E is the permittivity of the material in question, e is the 
electron charge, C is the net impurity concentration of electrons and holes, and p is 
the space charge. The electric field is related to the electrostatic potential as 

and the net impurity concentration is given as 

C= (No- P,). (5) 

Here N, and P, are imposed doping distributions of donor and accepter ions, 
respectively. 

The mobilities and diffusivities appearing in Eqs. (l))(2) are dependent upon the 
material under consideration, and may reflect field and/or doping dependence, as 
well as carrier-to-carrier scatering effects. Furthermore, although the Einstein 
relation between mobility and diffusivity may be implemented for specific problems, 
it is not implicitly assumed here. 

Upon specification of the functional dependence of the mobilities and diffusivities 
on the carrier concentrations and electric field, and specification of C, Eqs. (l)-(3) 
may be solved as given. However, the characteristics of this coupled system, aside 
from its nonlinearity, are dictated by the elliptic nature of Poisson’s equation. While 
this does not introduce any significant sources of computational inefficiency when 
considering one-dimensional solutions, solution of this system as a block 3 x 3 
coupled system in multidimensions would necessitate the use of methods for 
coupled elliptic systems. Such methods typically involve the direct or iterative 
solution of a large system of linear equations generated by the discretization of the 
governing PDEs. When the nonlinearity of the governing equations considered, it is 
apparent that these large systems may need to be solved repeatedly at each time 
step. Alternatively, if the appearance of the potential could be eliminated from the 
continuity equations the block 3 x 3 coupled system would be reduced to a block 
2 x 2 coupled parabolic system and a scalar, elliptic equation. This coupled 
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parabolic system would be ideally suited for solution using a noniterative, split LB1 
procedure [2,3], and the scalar, elliptic equation need then be solved only once per 
time step. The noniterative solution of the continuity equations and the need to 
solve Poisson’s equation only once would result in a substantial reduction in the 
computational effort required to solve the system at each time step. 

In order to implement such a solution procedure, the system of equations must 
be reformulated through manipulation of the continuity equations to allow sequen- 
tial solution without affecting stability. The drift terms in Eqs. (1) and (2) are first 
expanded as 

and 

Poisson’s equation may also be expanded yielding 

(7) 

(8) 

Using the definition of electric field (Eq. (4)), Eq. (8) may be substituted into 
Eqs. (6) and (7) to obtain 

-&(Np.E,)= (9) 
I 

and 

-c&(Plr,Ei)= -I,,,P(N-P-c)+Ei(~-~~). (10) I I I 

The current continuity equations may now be expressed as 

and 

(11) 
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The importance of this reformulation lies in the substitution of the space charge 
for the Laplacian of the electrostatic potential. This substitution allows a strong 
coupling between the continuity and Poisson’s equations to be retained while 
removing its dependence on the explicit appearance of the potential. A weaker 
coupling, due to the appearance of the electric field as a coefficient, may be 
eliminated without affecting the stability of the overall solution algorithm by simply 
lagging this coefficient. As will become apparent when the numerical solution 
technique is discussed, the reformulation allows the block 3 x 3 coupled system to 
be reduced to a block 2 x 2 coupled system plus a decoupled, scalar, elliptic 
equation. The decoupling of the elliptic equation results in a highly efficient 
algorithm in which the coupled 2 x 2 system is solved noniteratively, using LB1 
techniques, followed by the ADI solution of the scalar elliptic equation. Since the 
space charge is treated fully implicitly in both systems, stability is retained without 
introducing iteration between the 2 x 2 coupled system and the scalar elliptic 
system, as will be demonstrated subsequently. For this reason, this is referred to as 
a space charge coupled algorithm (XC). 

When applied to transient simulations, using a backward Euler time dis- 
cretization, both the fully coupled and the decoupled SCC algorithms have a time 
truncation error which is O(dt). However, the SCC algorithm contains an 
additional O(dt) error, relative to the fully coupled approach, due to the lagging of 
the electric field, which facilitates the decoupling. This is a transient error and 
appears as an error in the total current which is proportional to the electrical 
displacement. However, the Poisson residual 

-e(N-P-C) 

will remain zero throughout the transient and the steady state solution obtained 
will have no error relative to the fully coupled approach. 

Conservution qf Total Current 

Although the SCC algorithm discussed above allows a highly efficient solution 
procedure to be implemented, the errors in the total current make it unattractive, 
and it is not recommended, since conservation of total current during transients is 
usually a primary concern. This error can be eliminated, however, by recasting 
Poisson’s equation in a statement of total current conservation through temporal 
differentiation: 

This total current constraint is solved in lieu of Eq. (3), and the resulting algorithm 
is referred to as the space charge coupled, current conserving algorithm (SC4). 
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While this reformulation allows rigorous conservation of total current to be 
maintained during transients using a decoupled, sequential solution technique, the 
O(dt) error which appeared in the total current in the SCC algorithm now appears 
as a related @(At) error in the Poisson residual. An equation governing this residual 
may be derived from the continuity equations, Eqs. (11) and (12), and the total 
current constraint, Eq. (14) with the result 

where the superscripts n and n + 1 identify the time levels to be used in the temporal 
discritization. The first term on the RHS of Eq. (15) gives a temporal decay of any 
non-zero Poisson residual. The second term is cO(r,V+’ - II/“) = O(dt) and arises 
since the electric field is lagged in the continuity equations and treated fully 
implicitly in the total current constraint. This term may generate localized Poisson 
residuals in regions where there are substantial gradients of the mobility-carrier 
density product, however, it is easily shown that such residuals are bound by 

where A$,,,,, is the maximum change in potential across any time step. This 
suggests that the maximum value of the Poisson residual during a transient can be 
limited by selecting time steps such that A$“+’ = (t/F+’ - $“) never exceeds a 
prespecified maximum value. As steady state is approached, A$“+’ will go to zero 
independent of At and, in accordance with Eq. (15), any local Poisson residual will 
decay to zero as well. A unique steady solution will thus be obtained with no 
additional error relative to a fully coupled approach, even if the initial Poisson 
residual is non-zero. It should be noted that in the calculations to be presented 
here, as well as in a variety of other practical calculations [S-7], consideration of 
Poisson residuals has not had any impact on the selection of time steps. 

An approach similar to the present SC4 approach has also been followed by 
Mock [S] in the development of a stable, fully decoupled algorithm. However, 
there are important differences between Mock’s approach and that followed here. 
Mock [S] solves the continuity equations in the form given by Eqs. (1) and (2). 
The system of Eqs. (1) (2), and (14) does not contain information regarding the 
space charge. Thus, as Mock points out, if the Poisson residual is not initially zero, 
or if the temporal integration of Eq. (14) is not sufficiently accurate, the residual 
may grow unacceptably, and a unique steady state solution need not be obtained. 

Mock also indicates potential problems regarding conservation of total current in 
his decoupled algorithm. This can be traced to the order in which the equations are 
solved. The electrostatic potential is advanced first by Mock using an equation 
analogous to Eq. (14). Since the carrier concentrations are not yet available at the 
advanced time level, they are lagged. As a result the total current constraint is not 
rigorously satisfied at the advanced time level. To alleviate this problem, iteration 



426 KRESKOVSKY AND GRUBIN 

may be introduced negating to some extent the advantages obtained by decoupling. 
By contrast, in the algorithm considered here, the carrier concentrations are advan- 
ced first, and the total current constraint is satisfied rigorously on a fully implicit 
basis without iteration. It is emphasized that in the present formulation Eq. (14) is 
used only to insure conservation of total current, and not to provide stability. 

Nondimensionalization 

Before attempting to solve the system of Eqs. (1 l), (12), and (14) numerically, it 
is advantageous to recast these equations in dimensionless form. Historically [6], 
such equations have been nondimensionalized using intrinsic carrier density n;, 
Debye length, L,, a reference potential given as V, = kTJe, etc. Such quantities 
may be desirable from a physical point of view; however, they are not generally 
well-suited for computational purposes. If such quantities are used, the com- 
putational variables may exhibit large exponents which can lead to machine over- 
flows. The approach taken here is to use the following arbitrary reference quantities. 
Carrier concentrations are normalized by N,, potentials by II/,, lengths by X,, 
velocity (PLY,) by V,, time by t,z X,/V,, mobility by p,, diffusivity by D,, and per- 
mittivity by E,. Equations (I 1 ), (12) and (14), expressed in nondimensional form 
using these reference quantities, are 

where the dimensionless parameters Cn, Re, and Sn are given by 

Re= 

(17) 

(18) 

(19) 

(20) 

As stated previously, the reference quantities are arbitrary; however, when properly 
chosen, the computational variables will typically vary between zero and unity. The 
dimensionless parameters given by Eq. (20) then indicate relative magnitude of each 
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term in the governing equations. The reference quantities are usually chosen as 
follows: 

N,--the maximum carrier density specified in the doping profile 
+,the maximum boundary value specified for potential 
X,-the maximum dimension of the device 
V,-the saturation velocity of the fastest carrier 
pL,-the maximum mobility of either carrier 
D,-the maximum diffusivity of either carrier. 

As a result of these choices, t, will be the time required for the fastest carrier to 
traverse the longest dimension of the device when moving at its saturated drift 
velocity. 

THE NUMERICAL METHOD 

LBI Procedures 

The numerical method used in the present algorithm is based on application of 
consistently split, linearized, block implicit (LBI) methods, as developed by Briley 
and McDonald [2,3] to the system given by Eqs. (17)-( 19). LB1 methods have 
been applied to a wide variety of problems in the field of CFD (cf. [ 10-121) with a 
high degree of success. Thus, application of such methods to semiconductor 
problems can draw on a vast amount of related experience generated using LB1 
techniques. 

LB1 techniques center about the use of a formal linearization procedure in which 
systems of coupled nonlinear PDEs in one space dimension are reduced to a system 
of linear equations, which upon application of spatial differencing, may be 
expressed as a block coupled matrix system. The resulting system may then be 
solved efficiently, without iteration, to advance the solution. The benefits of the 
procedure are retained for multidimensional problems through application of ADI 
schemes in their natural extension to block coupled systems. The AD1 procedures 
reduce the multidimensional system of equations, having broad-banded matrix 
structures to systems of one-dimensional equations with narrow block-banded 
structures which are solved efficiently using fundamental block-elimination 
methods. 

Briley and McDonald [2] considered the coupled system of 1 nonlinear, time- 
dependent, multidimensional equations given by 

M4,) - = Wd,) + S(d,). at (21) 

In Eq. (21), 4I represent the vector of dependent variables, H(qi,) and S(d,) are non- 
linear functions of 4, which contain no spatial operators, and O(d,) is a general, 
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nonlinear, multidimensional, partial differential operator. Equation (2) is first time 
differenced about t” + fl At as 

H(q5)“+ ’ - H(fj)” 
At =BCD(d)“” +au7+‘1+u -B)C~(d)“+~(~)“l, (22) 

where At=t”+‘-t”, and the subscript I has been dropped for clarity. The 
parameter /3 = 1 for a fully implicit scheme or j = 0.5 for the Cranck-Nicolson for- 
mulation. The implicit level nonlinear operators H, D, and S are then formally 
linearized using a Taylor series expansion about the explicit time level 

Equation (22) may then be expressed at each grid point in the solution domain as a 
matrix equation of the form 

(A + AtL) Ac+P+ ’ = At[D(qV) + S(f)], (24) 

where 

and 

C3D n 

L=-p%- 

(25) 

(26) 

As a result, the nonlinear, coupled system of PDEs given by Eq. (21) has been 
reduced to a block 1 x I coupled, linear system of temporal difference equations 
(Eq. (24)) which, upon spatial differencing, need only be solved once per time step 
to obtain a solution. Additionally, since the linearization error is at worst of the 
same order as the temporal discretization error, the linearization is not expected to 
introduce significant inaccuracies. 

Application of Eq. (24) to second order PDEs in one space dimension, using 
standard three-point spatial difference approximations requires the solution of one 
block Ix 1 tridiagonal system per time step. Such a system can be solved efficiently 
using standar block-tridiagonal elimination procedures. 

The application of the LB1 algorithms given by Eqs. (24)-(26) to multidimen- 
sional problems results in the loss of the narrow, block-banded matrix structure 
obtained in one space dimension. The discretization of the multidimensional spatial 
operator results in a broad-banded structure, which, if solved by direct or iterative 
methods, can be extremely inefficient. Typically, the computational effort required 
to solve such a system using a direct method varies as N* to N’ (where N is the 
total number of grid points) [ 11. Iterative matrix solver effort may vary as N per 
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iteration, but may exhibit slow convergence as the number of grid points rises, or if 
highly unequally spaced mesh are used. Such observations led Briley and 
McDonald f2, 31 to develop consistently split LB1 algorithms for multidimensional 
problems. 
operator, 
direction 

The splitting is accomplished by dividing the multidimensional spatial 
L, into one-dimensional operators associated with each coordinate 

L=L.+L,.+L,. (27) 

24) is then split following the scalar ADI development of Douglas and Equation ( 
Gunn [ 131: 

(A + AtL,) A#* = At[D(f) + S(@)] @a) 

(A + AtL,) A#** = A A$* (28b) 

(A + AtL.) A#*** = A Ad**. (28~) 

Here d4*, A#**, and Ad*** are intermediate solutions of Eqs. (28a)-(28c). Again, 
if three point operators are used to approximate the spatial operators, L,, each of 
Eqs. (28at(28c) will be block-tridiagonal, and can be efficiently solved. The block 
size and band width are independent of the number of grid points; hence, the com- 
putational effort required to solve the sequence varies linearly with the total num- 
ber of grid points regardless of the number of space dimensions considered. For 
two-dimensional problems, Eq. (28~) is omitted. Elimination of the intermediate 
steps in Eqs. (28a)-(28c) yields 

(A + AtL,) A-‘(A + AtL.,.) A -‘(A + AtL,) A#*** 

= At[D(@‘) + S(&‘)] + O(At’). (29) 

Thus 

A4 “+ ’ = Ad*** + O(At2). (30) 

The development given above presents a brief outline of the LB1 method used in 
the present investigation. A more detailed development, as well as in-depth dis- 
cussion of LB1 methods, the linearization procedure, and related topics may be 
found in the article by Briley and McDonald [2]. 

Application to the Semiconductor Equations 

The semiconductor equations given by Eqs. (17)-( 19) may be expressed in the 
form of Eq. (21), where 

I 
(31) 
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S(d) = 

i 

SnCn~(N-P-C)+R 
\ 

0 I 

(32) 

(33) 

for 4 = (N, P, $)‘. The permittivity, mobilities, and diffusivities appearing in 
Eqs. (31)-(33) are evaluated at the explicit, or t” level, and are assumed known. 
Equations (31)-( 33) may then be linearized following the example of Eq. (23), 
using Eq. (4) to express Ei in terms of $. The resulting linearized equations can 
then be expressed as a block 3 x 3 coupled system which is of the form of Eq. (24) 
and which can be solved efficiently by block tridiagonal elimination in one space 
dimension. For multidimensional problems, however, this block 3 x 3 coupled 
system cannot be split following Eq. (28) since the A matrix has the form 

A= 

and is singular. 

x xl0 
I 

x xl0 
--q- 
0 010 

(34) 

The partitioning of the A matrix indicated by the dotted lines in Eq. (34) suggests 
that if-the L matrix (the linearized D-operator) could be similarly partitioned 
Poisson’s equation could be decoupled from the continuity equations. From 
examination of the D operator, it is apparent that this can be accomplished if the 
electric field, E,, appearing in the continuity equations, is evaluated explicitly. It 
will be demonstrated that this does not affect stability, and as a result, the coupled, 
block 3 x 3 system is reduced to a coupled, block 2 x 2 system and a scalar elliptic 
equation. This decoupled system is solved using the algorithm shown in Fig. 1. The 
carrier concentrations are first advanced through application of the noniterative, 
consistently split LB1 method (Eqs. (28a)-(28(c)) to the block 2 x 2 system. Then, 
with the solution for the carrier concentrations at the advanced time level known, 



SOLUTION OF SEMICONDUCTOR EQUATIONS 431 

ADVANCE N B P 

FIG. 1. Computational algorithm used to advance the solution in time. 

the decoupled, scalar elliptic equation for the electrostatic potential is solved, com- 
pleting a time step. The elliptic equation is solved using an iterative ADI procedure 
with cycled acceleration parameters [2, 13, 141. Consequently, the use of iteration 
is limited to solution of Poisson’s equation, and nonlinear iteration is eliminated 
completely. It should be noted that if the continuity equations were not refor- 
mulated, and the potential was simply lagged, sequential solution of Eqs. (l)-(3) in 
the order followed here introduces stability limits [ 151. 

Spatial Differencing 

The spatial difference approximations applied to the L and D operators must be 
developed in such a manner that the various components of the current vectors as 
well as the total current are rigorously conserved on a finite difference basis. To 
achieve this, rather than difference equations Eqs. (17)-( 19) directly, the equations 
expressed in terms of current vectors are differenced. These difference 
approximations, which are based on the central difference scheme, are manipulated 
into a form analogous to Eqs. (17)-( 19). The carrier concentrations, mobilities, dif- 
fusivities, permittivities, and potentials are defined at grid points, i, i+ 1, etc. The 
electric field, E, and the current density, J, are defined at half points, if 4, etc. 
Values of point functions required at half points are computed by simple averages 

d;+ I/Z = 34i + di+ 1). (35) 

The overall result is similar to that which is obtained from a control volume 
approach [ 161. 
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To obtain the difference approximations to the continuity equations, consider 
first Poisson’s equation, expressed in terms of the electric field 

--$E)=e(N-P-C). (36) 

This equation is differenced as 

where 

& r+ I;2 E I + I,2 - E, I.2 E 1-l 2 

A ./, 
= -r(N, - P, - C,), (37) 

and 

A, = ;(A,,, + Ar) (38) 

A/,=x,+, -.Y, (39) 

A,,, = x, - x, , . (40) 

The permittivities in Eq. (37) are obtained from Eq. (35), thus Eq. (37) may be 
expressed as 

1 E,+,E;+,,~-I-:,~ ,E;--I;, 8, E,+1,2-Er-1,2 

2 A.4 1 L +T A, 1 = -e(N;- P, - C,). (41) 

The second term on the LHS of Eq. (41) may be added and subtracted to yield, 
with some rearrangement, 

-i 

E I+ Ij2 -E I- I,2 

A.4 > 

=~,,.,i-C;~+~iE,+,,2(~)+E;~,,*(')~. (42) 
'I A A 

Equation (42) is recognized as a difference analog to Eq. (8). 
The electron curent 

is considered next. The divergence of the drift component 
approximated as 

(43) 

of current is 

(44) 
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Expressing the N,M, product at the half points in terms of Eq. (35) 

Adding and subtracting the first term on the RHS of Eq. (45) 

awPy1= (p,,N)i [El + II24 El- l/2 

A 1 

Eq. (42) may then be substituted in Eq. (46) to yield 

a(NG) 
ax 

= -i+(N,-J-C,) 
I 

(N~n)i- (NA),- I 

which is recognized as the difference analog to Eq. (9). Finally, the diffusive con- 
tribution to the current is approximated as 

avwvw) = 6, 1,2w,+ I -N;)lA,)-D;- ,,AW;-N,-,MJ 
ax AA 

]- (48) 

Similar approximations are obtained for the divergence of the hole current. The dif- 
ference analog for the total current constraint, Eq. (19) is obtained using the LHS 
of Eq. (37) for the displacement, and Eqs. (44) and (48) (and their hole counter- 
parts) for the drift and diffusion currents. 

The approximation given above are all formally O(A2) if the mesh spacing is 
uniform. For unequally spaced meshes the formal accuracy of these approximations 
reduces to O(A); however, the leading terms in the truncation error are typically of 
the form 

(49) 

where AR = A,/A,. Thus, provided the mesh spacing does not change too rapidly, 
the accuracy of the scheme may approach second order for unequally meshes. 
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Artificial Diffusion 

It is well known that the central difference approximations used in the present 
solution procedure may give rise to spatial oscillations in the solution, and may 
even result in the failure of iterative methods to converge, if the potential difference 
between grid points exceeds twice the thermal voltage, 2kT/e. As a result, many 
workers in the solid state community have abandoned the use of the central dif- 
ference scheme in favor of the exponential scheme of Scharfetter and Gummel [ 171, 
which suppresses such oscillations. The Scharfetter-Gummel scheme was not used 
here since the difference approximations based on it cannot be manipulated into a 
form analogous to Eqs. (16))( 18) as required. 

The problems with the central difference scheme alluded to above are not unique 
to the field of solid state device simulation, but may occur whenever central dif- 
ferences are applied to a convection-diffusion equation. Numerous investigations in 
the field of CFD have examined the problem, and Roache [18] discusses the 
problem in detail for Burgers equation. From a physical point of view, such spatial 
oscillations are typically an indication that the spatial gradients in the solution are 
locally too steep to be resolved on the specified grid. Alternatively, it is possible to 
interpret such oscillations as being the result of Fourier components in the solution 
with wave lengths less than the Nyquist frequency, 2Ax, which cannot be supported 
on the mesh. 

While researchers in the field of CFD have developed exponential schemes 
paralleling that of Scharfetter and Gummel [ 19, 203, they have also developed a 
means of stabilizing the central difference scheme through the introduction of 
artificial diffusion [3]. Artificial diffusion damps the high frequency components of 
the solution which cannot be supported on the local mesh and suppresses the 
oscillations which would otherwise be present. This approach is followed in the 
present solution procedure. Artificial diffusion is introduced locally by augmenting 
the physical diffusion coefficient. A computational diffusion coefficient is thus 
defined as 

Re,., > Re,., 

D camp =D phys ’ Re,., < Re,., (5Ob) 

where 

Re 
ICnEipL( Ax,Re 

A.q = D ’ phys 

If the Einstein relation is implemented, Eq. (51) reduces to 

(51) 

Re AlClie 
Al, = F’ (52) 



SOLUTION OF SEMICONDUCTOR EQUATIONS 435 

or artificial diffusion is introduced if the potential difference between grid points 
exceeds Re,. kT/e. If Re,, is taken as 2.0, artificial diffusion is added when the poten- 
tial difference between grid points exceeds the familiar value, 2kT/e. 

Obviously, the use of artificial diffusion must be implemented with extreme care. 
If, for example, it is introduced in a region where the carrier concentrations are 
relatively uniform, the effect will be insignificant regardless of the potential 
variation between grid points. However, if it is introduced in a region where 
significant gradients of the carrier densities exist, the diffusion component of the 
current vectors may be in error. Under such circumstances, the results must be 
evaluated carefully to determine if the calculation should be performed using local 
mesh refinement. 

It is of interest to note that the present hybrid scheme using central differences 
with artificial diffusion and the Scharfetter-Gummel scheme have the same limiting 
forms as the electric field approaches zero and infinity [21]. At the limit of zero 
field, both schemes reduce to the standard three-point central difference 
approximation to the diffusion term. At high field, both schemes reduce to a 
two-point upwind difference approximation to the drift term. In this sense, the 
ScharfetterGummel scheme can be thought of as containing an “implicit” artificial 
diffusion. An advantage of the present formulation is that the artificial diffusion can 
be directly controlled, and the magnitude of its effect explicitly evaluated. 
Additionally, it can be shown [21] that Re, can be chosen as a function of Red.r in 
such a manner that the present hybrid scheme is equivalent to the Scharfetter- 
Gummel scheme. 

Estimation of Computational Effort 

The computational effort required to solve the linearized system of difference 
equations is considered here. Since only scalar or block 2 x 2 tridiagonal matrices 
must be solved as a result of ADI splitting, the overall solution algorithm is highly 
efficient. Solution of a block-tridiagonal matrix requires approximately 3M (12 + 13) 
operations, where M is the number of diagonal blocks and 1 is the block size [22]. 
Solution of a scalar tridiagonal system requires approximately 5M operation [22]. 
For a three-dimensional problem with a grid size by NX by NY by NZ each of 
Eqs. (28a))(28c) must be solved NY * NZ, NX* NZ, and NX * NY times, respec- 
tively. For the block 2 x 2 structure considered here the total number of operations 
required to solve this sequence is thus approximately 

(NY*NZ)(3 * NX)(12)+(NX*NZ)(3 *NY)(12) 

+ (NX* NY)(3 * NZ)(12)= lOBN,, (53) 

where N, = NX * NY * NZ, the total number of grid points. The operations 
required for the scalar tridiagonal system which must be solved is, similarly, 

(NY* NZ)(S*NX)+(NX* NZ)(5* NY)+(NX* NY)(S*NZ)=lSN,. (54) 
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Thus, the total number of operations required to solve the linear systems at each 
time step is of the order 

OPT= 108Nr + (15N,)Z, (55) 

where I is the number of iterations required in the AD1 solution of the scalar elliptic 
equation. For two-dimensional problems these numbers reduce to 72N, and lON,I, 
respectively. The elliptic ADI solver typically converges to the required degree of 
accuracy to insure conservation of total current in from 50 to 100 iterations (I= 50 
to 100). 

The estimates given above are for implementation on a scalar machine. On a vec- 
tor machine such as the CRAY-1, it is possible to achieve a substantial reduction in 
the apparent effort by performing the solution of each of Eqs. (28a)-(28c) in 
parallel. For example, consider the x-implicit sweep in which Eq. (28a) must be 
solved along each of the NY * NZ x-implicit lines. If a vector length VL is defined, 
then VL of the x-implicit lines can be solved in parallel with an effort equal to that 
of a single x-line plus the overhead associated with the vector operations. The num- 
ber of vector operations for the x sweep would be proportional to (NY * NZ)/VL 
rather than (NY * NZ). The equivalent number of operations for the complete 
algorithm is then of the order of 

OPTv= 108N,/VL+ (ISN,/VL)I. 

On a square mesh with NX = NY = NZ = N, N, = N3, and if sufficient storage and 
vector length are available for VL = N*, 

OPT, = 108Ny3 + ( 15Ny3)Z. 

COMPUTED RESULTS 

The results to be discussed subsequently were all computed assuming silicon as 
the semiconductor material in question. The mobilities were determined from the 
relationship of Caughey and Thomas [23] as given by Kurata [24]: 

Prnax-Pain IL 1 
’ = 1 + (I Cl /Nrel)’ + [( NP)“‘/2.04N,,,]” + pmin 1 [ 1 + ( IEl/E,,,)p] ‘IB (56) 

The constants appearing in Eq. (56) are given in Table I. This relationship was used 
for all calculations reported here. The diffusivities were obtained assuming the 
Einstein relationship 

L+. (57) 
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TABLE I 

Constant 
Value for hole 

mobility 
Value for electron 

mobility 

N rel 6.3 x lOI 8.5 x 10’” 
a 0.76 0.72 

Anax 495.0 1330.0 
Pmm 47.7 65.0 
-6 1.95 x lo4 8.0 x 10’ 
P 1.0 2.0 

The boundary conditions applied are for either ohmic contacts or free surfaces. 
At ohmic contacts the contact potential is set to the applied potential plus the built- 
in potential 

$=Fln($)+ V,,,. 
I 

(58) 

The carrier densities at such contacts are specified assuming zero space charge 
under equilibrium conditions 

N-P=C 

NP= Nf. 

(59) 

(60) 

At free surfaces, the electric field and the particle currents are set to zero. 
Finally, the recombination model used in the present computations is taken as a 

combination of the Shockely-Read-Hall and Auger recombination models 

(61) 

Stability, Convergence, and Accuracy Tests 

The stability of the present algorithm has not been analyzed on a theoretical 
basis. However, one of the authors [ 10,253 has had extensive experience with 
related algorithms in the field of CFD in which the coefficients of derivatives in 
parabolic equations, which are lagged, are determined through the solution of a 
Poisson equation. The resulting algorithms have been extremely stable and 
accurate. The present algorithm is expected to exhibit similar qualities. To verify the 
stability characteristics of the present solution algorithm, several one-dimensional 
calculations were performed. Under the one-dimensional constraint direct com- 
parisons can be easily made between the fully coupled LB1 approach in which 
Eqs. (3), (1 1 ), and (12) are solved as a block-coupled system, the SCC approach in 
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FIG. 2. Doping profile for one-dimensional test calculation. f = 1.01 x 10” e-‘1654(1-X)2 - 1 x 10i5. 

which Eqs. (3), (1 l), and (12) are solved with the electric field, Ei, appearing in 
Eqs. (11) and (12) evaluated at the explicit time level, and the SC4 current conserv- 
ing approach in which Eqs. (1 1 ), (12), and (14) are solved. The characteristics of 
this last algorithm are of primary concern since it is this algorithm which will be 
applied to multidimensional problems. The test problem considered is a 15pm 
N+P silicon device with a 10”/cm3 N’ region on a 10”/cm3 P-type substrate. The 
doping distribution is given as 

c= 1.01 x 10’7~-116.54(1 --xj2 _ 1 x 10’5 (62) 

and is shown in Fig. 2. The reference quantities and resulting dimensionless con- 
stants are given in Table II. 

TABLE II 

Quantity Value 

1.0 x lO”/cm’ 
3.0 v 

15.0 x 10m4 cm 
1.0 x 10’ cm/set 

1300.00 cm’/V-set 
34.4 cm2/sec 

150.0 psec 
0.0266 
435.8 

1.22 x 104 
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For the first series of calculations, a forward bias of three volts was applied 
across the device. The initial carrier distributions were set equal to the doping dis- 
tribution and the electrostatic potential was initialized consistently (zero space 
charge). A mesh of 51 equally spaced grid points was used with Re, = 2. An initial 
dimensionless time step of 0.001 was chosen. The time step was increased by a fac- 
tor of 1.5 per time step to a maximum of 100. This maximum time step is 100 times 
the transit time across the device for a carrier traveling at its saturated drift 
velocity; thus it represents a time step of a magnitude which would typically be 
significantly larger than that used for an accurate transient calculation. It is also 
greater than the convective and diffusive limits associated with explicit integration 
of the continuity equations. The minimum time step is approximately 3.5 times the 
dielectric relaxation time. The dielectric relaxation time typically represents a 
stability limit for decoupled algorithms in which Poisson’s equation is solved 
sequentially in the order followed here [ 151. Thus if such a stability limit were 
present in either the SCC or SC4 algorithms, the present choice of time steps should 
cause the solution to diverge or exhibit instability. 

The convergence behavior for the fully coupled, SCC and SC4 algorithms is 
shown in Fig. 3, where the maximum residual for the continuity equations, defined 
as 

Res,,, = MAX((V.J,+RI, IV.J,+RI), (63) 

and the magnitude of the time step are plotted as a function of time step number. 
The maximum residual for all three algorithms is reduced from approximately 1.0 
to 1.0 x 10e7 in about 50 time steps and no signs of instability are evident. Thus, 
this comparison demonstrates that the time step restrictions associated with the 
dielectric relaxation time have been eliminated by the reformulation of the con- 
tinuity equations in the SCC and SC4 algorithms. The steady state distributions of 
potential and electron and hole concentration for this problem are shown in 
Figs. 4-6. In Fig. 5, the carrier concentrations are plotted on a log scale, whereas in 
Fig. 6 they are shown on a linear scale. All three algorithms converged to the same 
solution, as they should in the absence of any transient behavior. 

It may also be observed from Fig. 3 that the manner in which the residual decays 
is similar for all three algorithms. This is particularly true of the fully coupled and 
the SC4 algorithms. Such behavior suggests, at least for this test problem, that the 
O(dt) error associated with the Poisson residual in the SC4 algorithm does not 
adversely affect the transient accuracy of the solution. 

Previously, it was stated that the current conserving algorithm would converge to 
a unique solution even if the initial Poisson residual was not zero. This property of 
the SC4 algorithm was attributed to the manipulation of the continuity equations 
into a form which retains information about the doping distribution and which 
implicitly contains the relationship between the potential and the space charge 
given by Eq. (3). To demonstrate this property, a calculation was performed in 
which the initial potential distribution was at variance with the equilibrium dis- 
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FIG. 4. Steady state potential distribution for forward bias junction (all algorithms) 
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FIG. 5. Steady state distribution of electrons and holes for forward bias junction (all algorithms). 
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FIG. 6. Steady state hole (a) and electron (b) density distribution for forward junction (all 
algorithms). 

tribution given by Eq. (3). The initial potential distribution used in this calculation 
varied linearly across the device as shown by the broken line in Fig. 7. This is the 
correct distribution only if the initial space charge, pi = 0. However, the initial 
carrier distributions were not set equal to the doping distribution, but specified in a 
manner such that pi#O. The consistent potential distribution for the assumed 
carrier distribution is shown by the solid line in Fig. 7. The solution was integrated 
in time, using the inconsistent initial potential, to a steady result as discussed 
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FIG. 7. Comparison of initial nonequilibrium and equilibrium potential distributions used in uni- 
queness test. Forward bias. 

previously. The steady result was found to be identical to the solutions generated 
from consistent initial conditions, shown in Figs. 46, thus showing that a unique 
solution is obtained independent of the initial conditions, and that solution is iden- 
tical to the solution obtained using a fully coupled algorithm. 

The computations previously described serve to demonstrate the stability of the 
present method for large time steps as well as its convergence behavior. However, it 
is also important to understand the effects of mesh refinement and artificial dif- 
fusion on the computed solutions. To this end, the forward bias solution was 
recomputed varying the number of grid points and Re,.. Figure 8 shows the 
variation of potential across the device for Re, = 2, using 14, 51, and 101 grid 
points. The effects of varying the number of grid points while maintaining the same 
value of Re, is twofold. First, as the number of grid points is reduced the spatial 
truncation error increases. Second, since the grid spacing increases, the voltage drop 
between adjacent points also increases. Thus, a larger percentage of the total num- 
ber of grid points will have Redx > Re,, resulting in artificial diffusion being 
introduced over more of the solution domain with a further degradation of the for- 
mal solution accuracy. The results shown in Fig. 8 demonstrate this effect, and as 
can be seen the solution obtained using only 14 points, while qualitatively correct, 
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FIG. 8. Effect of grid spacing on potential distribution. 

shows significant quantitative differences when compared to the solutions obtained 
using 51 and 101 points. The latter two solutions tend to collapse onto each other, 
indicating sufficient resolution. This is varified further in Fig. 9, where the current 
density is shown as a function of the number of grid points with Re,. = 2. In Fig. 9, 
the results are also compared to the solution obtained using 100 unequally spaced 
points; the grid constructed such that Re,, < Re,. at all points (no artificial dif- 
fusion). As can be seen, the current asymptotically approaches a limiting value as 
the number of grid points is increased, and the result with 101 equally spaced 
points with artificial diffusion is very close to that obtained using the unequally 
spaced grid with no artificial diffusion. 

The effect of artificial diffusion alone on the solution can be examined by varying 
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FIG. 9. Effect of mesh spacing on current flux. 



SOLUTION OF SEMICONDUCTOR EQUATIONS 445 

1.0 

0.c 
( 

FIG. 10. 

0 0.2 04 06 08 IO 

DISTANCE x/x, 

Effect of artificial diffusion on potential distribution 

Re,. while keeping the number of grid points constant. The results for such solutions 
are shown in Figs. 10 and 11 for Re,. = 1.0, 2.0, and CC using 51 grid points, 
Re,. = co gives no artificial diffusion. Figure 10 shows the solution for the potential, 
and when compared with Fig. 8 it is apparent that the solution for Re,. = 00 is 
actually the most inaccurate on this mesh even though only physical diffusion is 
present. The voltage drop between some grid points is in excess of 2kT/e, and 
spatial oscillations of the carrier densities were present in the converged solution. 
Such oscillatory solutions, although numerically exact, are of course nonphysical 
and may be grossly inaccurate, depending on the magnitude of the oscillations. The 
introduction of artificial diffusion when the potential difference between grid points 
exceeds 2kT/e damps these oscillations. There is, as a result, a trade-off between the 
inaccuracy caused by such oscillations in the solution and inaccuracy caused by 
artificial diffusion. This is demonstrated further in Fig. 11, where the current density 
for these solutions is shown as a functions of Re,. It is apparent that without 
artificial diffusion the current is overpredicted by more than lOO%, while introduc- 
tion of artificial diffusion with Re,.= 2, which suppresses the oscillations in the 
carrier densities, results in less than 10% error. Values of Re,. > 2 generally reduce 
the magnitude of the oscillations, but do not suppress them entirely. Re,. -=c 2 
introduces excessive artificial diffusion. 

In addition to the forward bias solutions discussed above, a similar series of com- 
putations were performed for the same device subject to a reverse bias of three 
volts. All three algorithms again converged to the same solution, which is shown in 
Figs. 12 and 13. The effect of mesh resolution on the potential distribution is shown 
on an expanded scale in Fig. 14, where it is observed that solutions with 51 and 101 
points are effectively identical. The effect of artificial diffusion on the potential dis- 
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FIG. 12. Steady state potential distribution for reverse bias junction (all algorithm) 
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FIG. 13. Steady state hole (a) and electron (b) density distribution for reverse bias junction (all 
algorithms). 
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FIG. 14. Effect of grid spacing on potential distribution 

tribution is shown in Fig. 1.5. Here it is observed that without artificial diffusion, 
oscillations appear in the potential distribution. Whereas in the forward bias 
calculation, artificial diffusion was found to have a significant effect on the solution 
accuracy, particularly in the predicted current level, this is not the case for reverse 
bias. Under reverse bias, the majority of the potential drop occurs across the 
junction and artificial diffusion is introduced only in this region, depending on the 
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FIG. 15. Ekct of artificial diffusion on potential distribution. 



SOLUTION OF SEMICONDUCTOR EQUATIONS 449 

mesh spacing. Since under reverse bias the net current flux is zero, and since the 
drift and diffusive components of the current oppose each other other in the 
junction region, the effect of augmenting the physical diffusion coefficient is to 
smear, or broaden, the carrier profiles in this region. This is similar to shock smear- 
ing in fluid dynamics and only affects the solution in the immediate region of the 
junction. Thus, as is true in many simulation, if the detailed structure of the carrier 
concentration profiles at the edge of the depletion region is not of interest, artificial 
diffusivity can be effective in reducing the total number of grid points (within 
reasonable limits) required in the region of reverse bias junctions. Although this 
may not be of particular concern in one-dimensional calculations, the reduction in 
the total number of grid points in two- or three-dimensional simulations can be 
significant and result in a substantial reduction in the computational effort required 
to obtain a solution. 

Three-Dimensional Trunsient Simulution 

The full potential of the present technique is demonstrated here through the com- 
putation of the three-dimensional, transient response of a reverse bias silicon diode 
junction subjected to incident radiation using the SC4 algorithm. The incident 
radiation leaves in its path a wake of excess electron-hole pairs. These excess 
carriers respond initially by diffusion and to the equilibrium field, separating 
slightly, and upsetting the charge balance within the device. The equilibrium field 
distorts and the excess carriers are collected over a finite length of time at the device 
contacts. When the majority of the excess charge is collected, the electric field is 
restored to its initial, equilibrium state. 

The use of this problem as an example and test for the present algorithm is 
attractive because it involves large, localized disturbances within the device and 
requires that each components of current (electron, hole, and displacement) be 
rigorously conserved over the entire device volume. Additionally, the solution 
returns to the initial conditions once the charge is collected. Should any portion of 
the procedure fail, the results would immediately show evidence of such a failure. 

The specific device structure considered is shown in Fig. 16. The 10’*/cm3 N+ 
region is 2.0pm in width, penetrates 0.5 pm into the device, and extends from the 
top to the bottom of the device. The P-type substrate is doped to 10r5/cm3. The 
doping profile was specified analytically as 

C=(N+P,)e-“P-P,, (64) 

where 

and 

I= x, z < 0.5 pm 

I=Jx2+(z-o.5)2, z > 0.5 pm 
(65) 
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FIG. 16. Schematic representation of the three-dimensional device and computational segment. (all 
dimensions in pm unless noted.) 

In Eq. (66), N, is the intrinsic concentration of electrons and holes, and is taken 
as 1.0 x 10”/cm3 for the present simulation. Equations (64) and (66) are solved 
simultaneously to obtain N, and P,. The contacts, which cover the Nf region on 
the surface, and the opposite P surface are assumed to be ohmic, thus the carrier 
densities are assumed equal to the doping densities on the contacts. A potential of 0 
volts is applied to the P contract and + 3 volts is applied to the N+ contact. All 
other surfaces are assumed to be insulating and the corresponding boundary con- 
ditions (discussed previously) are applied. 

Due to the symmetry of the device structure, only a quadrant of the device need 
be considered in the computation, as is also shown in Fig. 16. The path of the ioniz- 
ing particle is assumed to lie along the x axis of the computational segment. A mesh 
of 28 x points by 25 y points by 25 z points was used. The mesh point distributions 
in the x-z, x-y, and y-z planes are shown in Figs. 17ac, respectively. The mesh 
points are distributed to provide adequate resolution of the track of the ionizing 
particle, as well as the depletion region surrounding the junction. The reference 
quantities and dimensionless constants used in this simulation are given in 
Table III. 



FIG. 17. Grid structure in (a) x--z plane, (b) .X-Y plane, and (c)y-z plane. 

TABLE III 

Quantity Value 

N, 
*, 
x, 
V, 
Pr 
D, 
t, 

Cn 
Re 
Sil 

1.0 x 10J8/cm3 
3.ov 

5.0 x 10m4 cm 
1 .O x 10’ cm/set 

1300.0 cm2/V-set 
34.4 cm*/sec 

50.0 psec 
0.798 
145.0 

1.36 x IO4 
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Since the device structure prior to being struck by incident radiation has no 
variation in the y coordinate direction, the equilibrium distribution of the carriers 
and the electrostatic potential is not a function of that coordinate. The equilibrium 
solution, which serves as the initial condition for the three-dimensional transient 
simulation, was therefore computed two-dimensionally for only a single x-z plane. 
The resulting undisturbed equilibrium solution at any plane of constant y is shown 
as’ contour plots of electron and hole density, and of potential in Fig. 18. The 

1 

FIG. 18. Equilibrium solution contour of (a) electron density, (b) hole density, (c) potential. Con- 
tours are equally spaced. 
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depletion region surrounding the junction is clearly evident. A surface plot of the 
potential is shown in Fig. 19. 

The three-dimensional simulation was initialized from the equilibrium solution 
through introduction of the excess carriers along the track of the ionizing particle. 
The generation of the carriers was assumed to take place over a period of 
approximately 10 psec through introduction of an exponential source term in the 
governing equations at each grid point along the track. The track was 4.5 pm in 
length and the effective diameter was 1130 A. The total excess charge implanted in 
the device was approximately 0.0072 pcoul. A time step of 0.05 psec was used for 
the first 50 steps of the solution. The time step was allowed to increase to 0.25 psec 
over the next 50 time steps, to 0.5 psec from time step 101 to 150, and to 1.25 psec 
from step 151 to the end of the simulation. A total of 350 time steps were taken to a 
final time of approximately 290 psec. 

Before discussing the results of the transient computation it is appropriate to 
describe the basic aspects of the device response. Prior to introduction of the excess 
electron-hole pairs the equilibrium potential and space charge distributions within 
the device satisfy Poisson’s equation, 

V’$, = -I p,, (67) 

where the subscript, e, refers to the equilibrium state. Since no current is flowing 
and since the gradients of the carrier densities normal to the contacts are 

FIG. 19. Surface plot of equilibrium solution potential. 
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(analytically) zero, the normal components of the electric field at the contacts are 
also zero. Furthermore, on all other surfaces of the device zero normal field boun- 
dary conditions are enforced. Applying Green’s theorem to Eq. (64) 

j 
V 
v.(-E,)dv= -S,.;p,dV 

(68) = P -E;&, 
s 

which states that the volume integral of the equilibrium space charge is equal to the 
surface integral of the normal component of the electric field, (E = -V$). Since 
E. S is zero everywhere, the integral of the equilibrium space charge is also zero. 
Now, the introduction of the excess carriers does not initially upset this balance 
since an equal number of electrons and holes are generated. However, during the 
initial phase of the transient, the excess carriers will respond to the equilibrium field 
and will also migrate by diffusion. A portion of the electrons which are deposited in 
the depletion region respond to the equilibrium field and are rapidly drawn to the 
N + region. Holes are correspondingly forced into the substrate. This separation of 
carriers gives rise to a local upset in the depletion region charge balance. The 
equilibrium junction field begins to collapse, and electric fields at the contacts begin 
to appear. Since no particle current has yet begun to flow out of the contacts, 
Green’s theorem again shows that the area averaged fields at the N+ and P con- 
tacts are equal! If the mobilities and contact concentrations of both carriers were 
equal, then the flux of electrons out the N + contact would equal the flux of holes 
out of the P contact and the volume integral of the space charge would remain 
unaltered. However, the electron concentration at the N+ contact is significantly 
higher than that of the holes at the P contact, and the electron mobility is also 
greater than that of the holes. As a result, electrons are initially collected more 
rapidly than holes. This alters the space charge integral, and further field distortion 
results. Since the electron currents at the N+ contact are greater than the hole 
currents at the substrate contact, conservation of total current requires that the 
additional field distortions manifest themselves as displacement currents at the sub- 
strate contact. This charge imbalance and the field at the substrate contact continue 
to grow until the field at the P contact is high enough to yield hole currents which 
balance the electron current at the N + contact. Once this is established, a quasi- 
equilibrium situation is established during which the majority of excess carriers are 
collected. As the last few electrons are collected, the remaining holes continue to 
flow out of the P contact balanced by displacement currents resulting from the 
return of the field to its initial equilibrium state, as the original space charge dis- 
tribution is restored. The displacement currents at the N+ contact are negligible 
since the high doping concentration prevents significant field distortions. 

Simultaneous with the collapse of the junction field and establishment of a field 
at the P contact the electrons and holes begin to migrate radially outward from the 
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axis of the track, initially by diffusion. Due to the difference in the diffusion coef- 
ficients, the electrons spread more rapidly, which gives rise to a secondary charge 
imbalance all along the axis of the track, particularly in the substrate. This 
generates a radially directed field which augments the radial outward flow of the 
holes by drift while drawing the electrons back towards the center of the track. As a 
result, the electrons and holes tend to spread radially at a uniform rate which is 
greater than that of the diffusion of holes, but less than that of the diffusion of 
electrons. 

The description of the charge collection transient given above is illustrated 
graphically in the following figures. Fig. 20 shows the current pulse and charge 
collected at the N+ contact. This current pulse is predominenty due to the flux of 
electrons, which were initially deposited along the track, out of the device. The 
initial peak in the current is associated with the rapid distortion of the junction field 
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FIG. 20. Current and charge vs time at N+ contact. 
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and establishment of the held at the P contact. The particle and displacement 
current pulses at the P contact are shown in Fig. 21. During the initial phase of the 
transient the current is primarily the displacement current, which is associated with 
the rapid establishment of the field at the P contact. From both Figs. 20 and 21 it is 
apparent that after 290 psec the majority of the excess carriers (approximately 
99%) have been collected. This is further borne out by examination of the “displac- 
ment charge” at the P contact, shown in Fig. 22. The displacement charge (the time 
integral of the displacement current) represents the departure from the equilibrium 
field distribution at the contact 

e,=J”j -E$$dAdr 
0 A 

(69) 
= - s(V$I,-V$IO).dA. s A 

Since after 290 psec the displacement charge is nearly zero, it is apparent that the 
field at the P contact has almost returned to its initial state. 

It is also possible to determine the average field at the P contact at any time dur- 
ing the transient from the displacement charge. Thus, it is observed that the 
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FIG. 21. Hole and displacement current vs time at P contact. 
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FIG. 22. Displacement charge vs time at P contact. 

maximum average field at the contact is approximately 4.2 x lo3 volts/cm at 35 psec 
into the transient. This is well below the value of electric field at which the hole 
velocity saturates and gives a hole velocity of the order of 1.65 x lo6 cm/set. With 
the density of holes at the contact equal to 1 x 1015/cm3, and the contact area of 
2.5 x 1O-7 cm2 the drift component of current is 0.066 mA. From Fig. 21 the total 
current at the P contact at this time is 0.067 mA, thus the holes are collected 
predominantly by drift at the contact. 

The details of the distortion of the electric field are shown in Figs. 23 and 24. 
Figure 23 shows the potential distribution at several instants during the transient in 
the x-z plane, which contains the track of the ionizing particle. Figure 23a shows 
the potential distribution after 2.5 psec. Here, the small radial fields along the axis 
of the track are evident as is the initiation of the axial field between the end of the 
track and the P contact. The junction field has also begun its collapse, although this 
is not clearly evident at this time. Figure 23b shows the same result after 14 psec. 
The collapse of the junction field and the high field at P contact are shown clearly 
here. After 30 pscc the potential distribution in this plane appears as shown in 

5x I 689 14 
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FIG. 23. Potential surface in the x-z plane of the track at (a) 2.5 psec, cb) 14 psec, (c) 38 psec, and 
(d)290 psec. 

Fig. 23~. The potential surface in the plane of the track retains this distorted shape, 
more or less, until field restoration occurs, as shown in Fig. 23d, after 290 psec. 

In Fig. 24 contour plots of the potential in the y-z plane 1.4 pm below the N+ 
contact are shown at 2.5, 14.0, 38.0, and 100 psec. This y-z plane is normal to the 
axis of the track of the ionizing particle, which passes through this plane at the 
upper-left-hand corner of the plots. The contour values are equally spaced and the 
maximum and minimum values are noted in each frame. The contours clearly show 
that initially the spreading of the disturbance is axisymmetric in nature. However, 
as time progresses, and the disturbance propagates outward further from the axis of 
the track, the structure of the device exerts a significant influence on the potential 
distribution and the axisymmetric structure is lost. 
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FIG. 24. Comparison of potential contours in a plane normal to the axis of the track, 1.4 pm, below 
the N + contact, at (a) 2.5 psec, (b) 14.0 psec, (c) 38.0 psec, (d) 100.0 psec. Contours are equally spaced. 

The distribution of the electron concentration in the plane of the track is shown 
in Fig. 25 at various times following the strike. The lateral spreading of the elec- 
trons is clearly evident, as is the shortening of the track at latter times indicating 
the collection of the excess electrons. At 290 psec following the strike, the concen- 
tration of the remaining excess electrons is too small to appear on the plots for the 
chosen contour values, further indicating that the majority of the excess charge has 
been collected, and the electron distribution has almost returned to the initial state. 
The distribution of the excess holes closely follows that of the electrons. 

This simulation demonstrates the capability of the present algorithm, particularly 
with regard to the important consideration of current conservation. The current 
flux and charge collected at the N+ and P contacts agreed to within five significant 
figures throughout the computation. With regard to the field distortions during the 
transient, it should be noted that the present authors have predicted qualitatively 
similar results for two-dimensional simulations [26], as have Hsieh, Murley, and 
O’Brien [27]. 
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FIG. 25. Comparison of electron density contours in the plane of the track at (a) 2.5 psec, 
(b) 38 psec, (c) 100 psec, and (d) 290 psec. Contour values are equally spaced. 

The computation time required for the present simulation was 3.4 CPU hours on 
a CRAY-1 computer. For the 17,500 grid points and 350 time steps used in the 
simulation this is approximately 0.002 CPU set per grid point per time step. 
Although the simulation was performed on a CRAY-1, the present version of the 
code used was not developed for vector machines, thus when vectorized a substan- 
tial reduction in run time is anticipated. Additionally, the present code was based 
on a general LB1 algorithm which is coded to handle arbitrary systems of coupled 
PDEs and a substantial penalty in CPU time is incurred for this generality. 
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